电磁场张量(英语:electromagnetic tensor;electromagnetic field tensor)是明可夫斯基空间内,二阶反对称个张量,讲脱电荷勒电磁场内怎生运动个。
伊个形式有:
F μ v = { 0 E x c E y c E z c − E x c 0 B z − B y − E y c − B z 0 B x − E z c B y − B x 0 } {\displaystyle F^{\mu v}=\left\{{\begin{matrix}0&{\frac {E_{x}}{c}}&{\frac {E_{y}}{c}}&{\frac {E_{z}}{c}}\\-{\frac {E_{x}}{c}}&0&B_{z}&-B_{y}\\-{\frac {E_{y}}{c}}&-B_{z}&0&B_{x}\\-{\frac {E_{z}}{c}}&B_{y}&-B_{x}&0\end{matrix}}\right\}}
伊个对偶张量个形式:
G μ v = { B x B y B z 0 − B x 0 − E z c E y c − B y E z c 0 − E x c − B z − E y c E x c 0 } {\displaystyle G^{\mu v}=\left\{{\begin{matrix}B_{x}&B_{y}&B_{z}&0\\-B_{x}&0&-{\frac {E_{z}}{c}}&{\frac {E_{y}}{c}}\\-B_{y}&{\frac {E_{z}}{c}}&0&-{\frac {E_{x}}{c}}\\-B_{z}&-{\frac {E_{y}}{c}}&{\frac {E_{x}}{c}}&0\end{matrix}}\right\}}
伊有得箇眼性质: